
ARTICLE

Embodied intelligence via learning and evolution
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The intertwined processes of learning and evolution in complex environmental niches have

resulted in a remarkable diversity of morphological forms. Moreover, many aspects of animal

intelligence are deeply embodied in these evolved morphologies. However, the principles

governing relations between environmental complexity, evolved morphology, and the

learnability of intelligent control, remain elusive, because performing large-scale in silico

experiments on evolution and learning is challenging. Here, we introduce Deep Evolutionary

Reinforcement Learning (DERL): a computational framework which can evolve diverse agent

morphologies to learn challenging locomotion and manipulation tasks in complex environ-

ments. Leveraging DERL we demonstrate several relations between environmental com-

plexity, morphological intelligence and the learnability of control. First, environmental

complexity fosters the evolution of morphological intelligence as quantified by the ability of a

morphology to facilitate the learning of novel tasks. Second, we demonstrate a morphological

Baldwin effect i.e., in our simulations evolution rapidly selects morphologies that learn faster,

thereby enabling behaviors learned late in the lifetime of early ancestors to be expressed

early in the descendants lifetime. Third, we suggest a mechanistic basis for the above rela-

tionships through the evolution of morphologies that are more physically stable and energy

efficient, and can therefore facilitate learning and control.

https://doi.org/10.1038/s41467-021-25874-z OPEN

1 Department of Computer Science, Stanford University, Stanford, CA, USA. 2Department of Applied Physics, Stanford University, Stanford, CA, USA. 3Wu-
Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. 4 Stanford Institute for Human-Centered Artificial Intelligence, Stanford University,
Stanford, CA, USA. ✉email: agrim@stanford.edu; feifeili@stanford.edu

NATURE COMMUNICATIONS |         (2021) 12:5721 | https://doi.org/10.1038/s41467-021-25874-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25874-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25874-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25874-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25874-z&domain=pdf
http://orcid.org/0000-0002-5213-0224
http://orcid.org/0000-0002-5213-0224
http://orcid.org/0000-0002-5213-0224
http://orcid.org/0000-0002-5213-0224
http://orcid.org/0000-0002-5213-0224
http://orcid.org/0000-0002-7481-0810
http://orcid.org/0000-0002-7481-0810
http://orcid.org/0000-0002-7481-0810
http://orcid.org/0000-0002-7481-0810
http://orcid.org/0000-0002-7481-0810
mailto:agrim@stanford.edu
mailto:feifeili@stanford.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Evolution over the last 600 million years has generated a
variety of “endless forms most beautiful”1 starting from an
ancient bilatarian worm2, and culminating in a set of diverse

animal morphologies. Moreover, such animals display remarkable
degrees of embodied intelligence by leveraging their evolved
morphologies to learn complex tasks. Indeed the field of embo-
died cognition posits that intelligent behaviors can be rapidly
learned by agents whose morphologies are well adapted to their
environment3–5. In contrast, the field of artificial intelligence (AI)
has focused primarily on disembodied cognition, for example in
domains of language6, vision7, or games8.

The creation of artificial embodied agents9,10 with well-adapted
morphologies that can learn control tasks in diverse, complex
environments is challenging because of the twin difficulties of (1)
searching through a combinatorially large number of possible
morphologies, and (2) the computational time required to eval-
uate fitness through lifetime learning. Hence, common strategies
adopted by prior work include evolving agents in limited mor-
phological search spaces11–17 or focusing on finding optimal
parameters given a fixed hand-designed morphology17–20. Fur-
thermore, the difficulty of evaluating fitness forced prior work to
(1) avoid learning adaptive controllers directly from raw sensory
observations11–13,16,21–24; (2) learn hand-designed controllers
with few (≤100) parameters11–13,16,24; (3) learn to predict the
fitness of a morphology15,21; (4) mimic Lamarckian rather than
Darwinian evolution by directly transmitting learned information
across generations12,15. Moreover, prior works were also pri-
marily limited to the simple task of locomotion over a flat terrain
with agents having few degrees of freedom (DoF)13,15 or with
body plans composed of cuboids to further simplify the problem
of learning a controller11–13.

In this work, our goal is to elucidate some principles governing
relations between environmental complexity, evolved morphology,
and the learnability of intelligent control. However, a prerequisite
for realizing this goal is the ability to simultaneously scale the
creation of embodied agents across 3 axes of complexity: environ-
mental, morphological, and control without using the above-
mentioned heuristics to speed up fitness evaluation. To address this
challenging requirement we propose Deep Evolutionary Reinfor-
cement Learning (DERL) (Fig. 1a), a conceptually simple compu-
tational framework that operates by mimicking the intertwined
processes of Darwinian evolution over generations to search over
morphologies, and reinforcement learning within a lifetime for
learning intelligent behavior from low level egocentric sensory
information. A key component of the DERL framework is to use
distributed asynchronous evolutionary search for parallelizing
computations underlying learning, thereby allowing us to leverage
the scaling of computation and models that has been so successful
in other fields of AI6,25–27 and bring it bear on the field of evolu-
tionary robotics.

DERL opens the door to performing large-scale in silico
experiments to yield scientific insights into how learning and
evolution cooperatively create sophisticated relationships between
environmental complexity, morphological intelligence, and the
learnability of control tasks. Our key contributions are the fol-
lowing scientific insights. First, we create a paradigm to evaluate
morphological intelligence by assessing how well each morphol-
ogy facilitates the speed and performance of reinforcement
learning in a large suite of novel tasks. We furthermore leverage
this paradigm to demonstrate that environmental complexity
engenders the evolution of morphological intelligence. Second, we
demonstrate a morphological Baldwin effect in agents which both
learn and evolve. In essence, we find that evolution rapidly selects
morphologies that learn faster, thereby enabling behaviors
learned late in the lifetime of early ancestors to be expressed early
in the lifetime of their descendants. Third, we discover a

mechanistic basis for the first two results through the evolution of
morphologies that are more physically stable and energy efficient.

Results
DERL: a computational framework for creating embodied
agents. Previous evolutionary robotic simulations11–13,15 com-
monly employed generational evolution28,29, where in each gen-
eration, the entire population is simultaneously replaced by
applying mutations to the fittest individuals. However, this
paradigm scales poorly in creating embodied agents due to the
significant computational burden imposed by training every
member of a large population before any further evolution can
occur. Inspired by recent progress in neural architecture
search30–32, we decouple the events of learning and evolution in a
distributed asynchronous manner using tournament-based
steady-state evolution28,31,33. Specifically, each evolutionary run
starts with a population of P= 576 agents with unique topologies
to encourage diverse solutions. The initial population undergoes
lifetime learning via reinforcement learning34 (RL) in parallel and
the average final reward determines fitness. After initialization,
each worker (CPUs) operates independently by conducting
tournaments in groups of 4 wherein the fittest individual is
selected as a parent, and a mutated copy (child) is added to the
population after evaluating its fitness through lifetime learning.
To keep the size of the population fixed we consider only the
most recent P agents as alive29,35. By moving from generational to
asynchronous parallel evolution, we do not require learning to
finish across the entire population before any further evolution
occurs. Instead, as soon as any agent finishes learning, the worker
can immediately perform another step of selection, mutation, and
learning in a new tournament.

For learning, each agent senses the world by receiving only
low-level egocentric proprioceptive and exteroceptive observa-
tions and chooses its actions via a stochastic policy determined by
the parameters of a deep neural network (Fig. 1b) that are learned
via proximal policy optimization (PPO)36. See the “Methods”
section for details about the sensory inputs, neural controller
architectures, and learning algorithms employed by our agents.

Overall, DERL enables us to perform large-scale experiments
across 1152 CPUs involving on average 10 generations of
evolution that search over and train 4000 morphologies, with 5
million agent-environment interactions (i.e., learning iterations)
for each morphology. At any given instant of time, since we can
train 288 morphologies in parallel asynchronous tournaments,
this entire process of learning and evolution completes in <16 h.
To our knowledge, this constitutes the largest scale simulations of
simultaneous morphological evolution and RL to date.

UNIMAL: A UNIversal aniMAL morphological design space.
Prior work on studying artificial embodied evolution in expres-
sive design spaces has primarily been studied in the context of
soft robotics, generally using predetermined actuation patterns
for control22–24,37–40. Instead, here we use the MuJoCo41 simu-
lator as our focus is on sensorimotor learning via RL. MuJoCo is
currently the dominant platform for the development of rein-
forcement and robot learning algorithms42. Due to the limited
expressiveness of prior15,18–20 hand-designed design spaces of
rigid body agents, we develop the UNIMAL design space
(Fig. 1d). Concurrently, Zhao et al.21 also introduced a rich design
space for rigid body agent design for locomotion tasks, although
this work did not address the problem of learning controllers for
these morphologies without requiring a complete and accurate
physics model of the agent and the simulator. In contrast, the
UNIMAL design space contains morphologies that can learn
locomotion and mobile manipulation in challenging stochastic
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environments without requiring any model of either the agent or
the environment.

Our genotype, which directly encodes the agent morphology, is
a kinematic tree corresponding to a hierarchy of articulated 3D
rigid parts connected via motor actuated hinge joints. Nodes of
the kinematic tree consist of two-component types: a sphere
representing the head which forms the root of the tree, and
cylinders representing the limbs of the agent. Evolution proceeds
through asexual reproduction via three classes of mutation
operations (see “Methods”) that: (1) either shrink or grow the
kinematic tree by growing or deleting limbs (Fig. 1d); (2) modify
the physical properties of existing limbs, like their lengths and
densities (Fig. 1d); (3) modify the properties of joints between
limbs, including degrees of freedom (DoF), angular limits of
rotation, and gear ratios. Importantly we only allow paired
mutations that preserve bilateral symmetry, an evolutionarily
ancient conserved feature of all animal body plans originating
about 600 million years ago2. A key physical consequence is that
the center of mass of every agent lies on the sagittal plane, thereby
reducing the degree of control required to learn left-right
balancing. Despite this constraint, our morphological design
space is highly expressive, containing ~1018 unique agent
morphologies with <10 limbs (see Supplementary Table 1).

Evolution of diverse morphologies in complex environments.
DERL enables us for the first time to move beyond locomotion in
flat terrain to simultaneously evolve morphologies and learn
controllers for agents in three environments (Fig. 1e) of
increasing complexity: (1) Flat terrain (FT); (2) Variable terrain
(VT); and (3) Non-prehensile manipulation in variable terrain
(MVT). VT is an extremely challenging environment as during
each episode a new terrain is generated by randomly sampling a
sequence of obstacles. Indeed, prior work43 on learning loco-
motion in a variable terrain for a simple 9 DoF planar 2D walker
required 107 agent-environment interactions, despite using cur-
riculum learning and a morphology-specific reward function.

MVT posses additional challenges since the agent must rely on
complex contact dynamics to manipulate the box from a random
location to a target location while also traversing VT. See
“Methods” for a detailed description of these complex stochastic
environments.

DERL is able to find successful morphological solutions for all
three environments (Fig. 2a; see Supplementary Video for
illustrations of learned behaviors). Over the course of evolution
the average fitness of the entire population improves by a factor of
about 3 in FT/VT and a factor of 2 in MVT. Indeed
morphological evolution plays a substantial role in increasing
the fitness of even the best morphologies across all three
environments (Supplementary Fig. 1b).

DERL also finds a diversity of successful solutions (Fig. 2b–h).
Maintaining solution diversity is generically challenging for most
evolutionary dynamics, as often only 1 solution and its nearby
variations dominate. In contrast, by moving away from genera-
tional evolution in which the entire population competes
simultaneously to survive in the next generation, to asynchronous
parallel small tournament based competitions, DERL enables
ancestors with lower initial fitness to still contribute a relatively
large abundance of highly fit descendants to the final population
(Fig. 2b). Given the initial population exhibits morphological
diversity, this evolutionary dynamics, as visualized by both
phylogenetic trees (Fig. 2c–e) and Muller plots44 (Fig. 2f–h),
thereby ensures final population diversity without sacrificing
fitness. Indeed, the set of evolved morphologies include different
variations of bipeds, tripeds, and quadrupeds with and without
arms (Fig. 2i–k, Supplementary Figs. 3, 4).

We analyze the progression of different morphological
descriptors across the three environments (Supplementary Fig. 2),
finding a strong impact of environment on evolved morphologies.
While agents evolved in all environments have similar masses and
control complexity (as measured by DoF ≈ 16), VT/MVT agents
tend to be longer along the direction of forward motion and
shorter in height compared FT agents. FT agents are less space-
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Fig. 1 DERL overview. a DERL is a general framework to make embodied agents via two interacting adaptive processes. An outer loop of evolution
optimizes agent morphology via mutation operations, some of which are shown in (b) and an inner reinforcement learning loop optimizes the parameters
of a neural controller (c). d Example agent morphologies in the UNIMAL design space. e Variable terrain consists of three stochastically generated
obstacles: hills, steps, and rubble. In manipulation in variable terrain, an agent must start from an initial location (green sphere) and move a box to a goal
location (red square).
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filling compared to VT/MVT agents, as measured by the
coverage45,46 of the morphology (see “Methods” for the definition
of coverage). The less space-filling nature of FT agents reflects a
common strategy to have limbs spaced far apart on the body
giving them full range of motion (Fig. 2i, Supplementary Figs. 3a,
4a). Agents in FT exhibit both a falling forward locomotion gait
and a lizard-like gait (Fig. 2i). Agents evolved in VT are often
similar to FT but with additional mechanisms to make the gait
more stable. For example, instead of having a single limb attached
to the head which breaks falls and propels the agent forward, VT
agents have two symmetrical limbs providing greater stability and
maneuverability (Fig. 2j, k, Supplementary Fig. 3a, b). Finally,
agents in MVT develop forward reaching arms mimicking pincer
or claw-like mechanisms that enable guiding a box to a goal
position (Fig. 2k, Supplementary Figs. 3c, 4c).

Environmental complexity engenders morphological intelli-
gence. The few prior analyses of the impact of environment on
evolved morphologies have focused on measuring various

morphological descriptors46 or on morphological complexity45.
However, a key challenge to designing any intelligent agent lies in
ensuring that it can rapidly adapt to any new task. We thus focus
instead on understanding how this capacity might arise through
combined learning and evolution by characterizing the intelligence
embodied in a morphology as a consequence of it’s evolutionary
environment. Concretely, we compute how much a morphology
facilitates the process of learning a large set of test tasks. This
approach is similar to evaluating the quality of latent neural repre-
sentations by computing their performance on downstream tasks via
transfer learning47–49. Thus in our framework, intelligent morphol-
ogies by definition facilitate faster and better learning in downstream
tasks. We create a suite of 8 tasks (Fig. 3a; see Supplementary Video
for illustrations of learned behaviors) categorized into 3 domains
testing agility (patrol, point navigation, obstacle, and exploration),
stability (escape and incline), and manipulation (push box incline
and manipulate ball) abilities of the agent morphologies. Controllers
for each task are learned from scratch, thus ensuring that differences
in performance are solely due to differences in morphologies.

Fig. 2 Evolutionary dynamics in multiple environments. a Mean and 95% bootstrapped confidence intervals of the fitness of the entire population across
3 evolutionary runs. b Each dot represents a lineage that survived to the end of one of 3 evolutionary runs. Dot size reflects the total number of beneficial
mutations (see “Methods”) accrued by the lineage. The founder of a lineage need not have extremely high initial fitness rank in order for it’s lineage to
comprise a reasonably high fraction of the final population. It can instead achieve population abundance by accruing many beneficial mutations starting
from a lower rank (i.e., large dots that are high and to the left). c–e Phylogenetic trees of a single evolutionary run where each dot represents a single
UNIMAL, dot size reflects number of descendants, and dot opacity reflects fitness, with darker dots indicating higher fitness. These trees demonstrate that
multiple lineages with descendants of high fitness can originate from founders with lower fitness (i.e., larger lighter dots). f–h Muller diagrams44 showing
relative population abundance over time (in the same evolutionary run as in (c–e) of the top 10 lineages with the highest final population abundance. Each
color denotes a different lineage and the opacity denotes its fitness. Stars denote successful mutations which changed agent topology (i.e., adding/deleting
limbs) and resulted in a sub-lineage with more than 20 descendants. The abundance of the rest of the lineages is reflected by white space. i–k Time-lapse
images of agent policies in each of the three environments with boundary color corresponding to the lineages above. b Shown are the correlation
coefficients (r) and P values obtained from two-tailed Pearson’s correlation.
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We first test the hypothesis that evolution in more complex
environments generates more intelligent morphologies that
perform better in our suite of test tasks (Fig. 3b). We find that
across 7 test tasks, agents evolved in MVT perform better than
agents evolved in FT. VT agents perform better than FT agents in
5 out of 6 tasks in the domains of agility and stability, but have
similar performance in the manipulation tasks. To test the speed
of learning, we repeat the same experiment with 1/5th of the
learning iterations (Fig. 3c). The differences between MVT/VT
agents and FT agents are now more pronounced across all tasks.
These results suggest that morphologies evolved in more complex
environments are more intelligent in the sense that they facilitate
learning many new tasks both better and faster.

Demonstrating strong morphological Baldwin effect. The
coupled dynamics of evolution over generations and learning
within a lifetime have long been conjectured to interact with each
other in highly nontrivial ways. For example, Lamarckian
inheritance, an early but now disfavored50 theory of evolution,
posited that behaviors learned by an individual within its lifetime
could be directly transmitted to its progeny so that they would be

available as instincts soon after birth. We now know however that
known heritable characters are primarily transmitted to the next
generation through the genotype. However, over a century ago,
Baldwin51 conjectured an alternate mechanism whereby beha-
viors that are initially learned over a lifetime in early generations
of evolution will gradually become instinctual and potentially
even genetically transmitted in later generations. This Baldwin
effect seems on the surface like Lamarckian inheritance, but is
strictly Darwinian in origin. A key idea underlying this
conjecture52,53 is that learning itself comes with likely costs in
terms of the energy and time required to acquire skills. For
example, an animal that cannot learn to walk early in life may be
more likely to die, thereby yielding a direct selection pressure on
genotypic modifications that can speed up learning of locomo-
tion. More generally, in any environment containing a set of
challenges that are fixed over evolutionary timescales, but that
also come with a fitness cost for the duration of learning within a
lifetime, evolution may find genotypic modifications that lead to
faster phenotypic learning.

In its most general sense, the Baldwin effect deals with the
intertwined dynamics of any type of phenotypic plasticity within
a lifetime (e.g., learning, development), and evolution over

Fig. 3 Environmental complexity fosters morphological intelligence. a Eight test tasks for evaluating morphological intelligence across 3 domains
spanning stability, agility, and manipulation ability. Initial agent location is specified by a green sphere, and goal location by a red square (see “Methods” for
detailed task descriptions). b–dWe pick the 10 best-performing morphologies across 3 evolutionary runs per environment. Each morphology is then trained
from scratch for all 8 test tasks with 5 different random seeds. Bars indicate median reward (n= 50) (b, c) and cost of work (d) with error bars denoting
95% bootstrapped confidence intervals and color denoting evolutionary environment. b Across 7 test tasks, agents evolved in MVT perform better than
agents evolved in FT. c With reduced learning iterations (5 million in (b) vs 1 million in (c)) MVT/VT agents perform significantly better across all tasks.
d Agents evolved in MVT are more energy efficient as measured by lower cost of work despite no explicit evolutionary selection pressure favoring energy
efficiency. Statistical significance was assessed using the two-tailed Mann–Whitney U Test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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generations52. Prior simulations have shown the Baldwin effect in
non-embodied agents which learn and evolve54–56. In the context
of embodied agents, Kriegman et al.24 showcase the Baldwin
effect in soft-robots evolved to locomote in a flat terrain, where
the within lifetime phenotypic plasticity mechanism is develop-
ment. The developmental process in this work consists of a single
ballistic straight-line trajectory in the parameters of a morphology
and its controller. As noted earlier, although the design space
used in the context of soft robotics is more expressive, it generally
comes at the cost of using predetermined, rather than learned,
actuation patterns for control22–24,37–40. Hence, the ballistic
developmental process in Kriegman et al.24 is non-adaptive; i.e., it
cannot learn from or be influenced in any way by environmental
experience. Moreover, controller parameters are directly trans-
mitted to the next generation and are not learned from scratch.

However, another common form of phenotypic plasticity,
which we focus on in this paper, lies in sensorimotor learning of a
controller through direct interaction with the environment,
starting from a tabula rasa state with no knowledge of the
parameters of controllers from previous generations. In this
general setting, we also find evidence for the existence of a
morphological Baldwin effect, as reflected by a rapid reduction
over generations in the learning time required to achieve a
criterion level of fitness for the top 100 agents in the final
population in all three environments (Fig. 4a). Remarkably,
within only 10 generations, average learning time is cut in half. As
an illustrative example of how learning is accelerated, we show
the learning curves for different generations of an agent evolved
in FT (Fig. 4d). The 8th generation agent not only outperforms
the 1st generation agent by a factor of 2 at the end of learning, but
can also achieve the final fitness of the first generation agent in 1/
5th the time. Moreover, we note that we do not have any explicit
selection pressure in our simulations for fast learning, as the
fitness of a morphology is determined solely by its performance at
the end of learning. Nevertheless, evolution still selects for faster
learners without any direct selection pressure for doing so. Thus

we showcase a stronger form of the Baldwin effect by
demonstrating that an explicit selection pressure for the speed
of skill acquisition is not necessary for the Baldwin effect to hold.
Intriguingly, the existence of this morphological Baldwin effect
could be exploited in future studies to create embodied agents
with lower sample complexity and higher generalization capacity.

Mechanistic underpinning. We next search for a potential
mechanistic basis for how evolution may both engender morpho-
logical intelligence (Fig. 3b, c) as well select for faster learners
without any direct selection pressure for learning speed (i.e., the
stronger form of the Baldwin effect in Fig. 4a). We hypothesize,
along the lines of conjectures in embodied cognition3–5, that evo-
lution discovers morphologies that can more efficiently exploit the
passive dynamics of physical interactions between the agent body
and the environment, thereby simplifying the problem of learning
to control, which can both enable better learning in novel envir-
onments (morphological intelligence), and faster learning over
generations (Baldwin effect). Any such intelligent morphology is
likely to exhibit the physical properties of both energy efficiency and
passive stability, and so we examine both properties.

We define Cost of Work (COW) as the amount of energy spent
per unit mass to accomplish a goal; with lower COW indicating
higher energy efficiency (see “Methods”). Surprisingly, without
any direct selection pressure for energy efficiency, evolution
nevertheless selected for more energy-efficient morphological
solutions (Fig. 4c). We verify such energy efficiency is not
achieved simply by reducing limb densities (Supplementary
Fig. 2e). On the contrary, across all three environments, the total
body mass actually increases suggesting that energy efficiency is
achieved by selecting for morphologies which more effectively
leverage the passive physical dynamics of body-environment
interactions. Moreover, morphologies which are more energy-
efficient perform better (Fig. 5a) and learn faster (Fig. 5b) at
any fixed generation. Similarly, evolution selects more passively
stable (see “Methods”) morphologies over time in all three

Fig. 4 A morphological Baldwin effect and its relationship to energy efficiency and stability. a Progression of mean (n= 100) iterations to achieve the
75th percentile fitness of the initial population for the lineages of the best 100 agents in the final population across 3 evolutionary runs. b Fraction of stable
morphologies (see “Methods”) averaged over 3 evolutionary runs per environment. This fraction is higher in VT and MVT than FT, indicating that these
more complex environments yield an added selection pressure for stability. c Mean cost of work (see “Methods”) for same lineages as in (a). d Learning
curves for different generations of an illustrative agent evolved in FT indicate that later generations not only perform better but also learn faster. Thus
overall evolution simultaneously discovers morphologies that are more energy efficient (c), stable (b), and simplify control, leading to faster learning (a).
Error bars (a, c) and shaded region (b) denote 95% bootstrapped confidence interval.
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environments, though the fraction of stable morphologies is
higher in VT/MVT relative to FT, indicating higher relative
selection pressure for stability in these more complex environ-
ments (Fig. 4b). Thus, over evolutionary time, both energy
efficiency (Fig. 4c) and stability (Fig. 4b) improve in a manner
that is tightly correlated with learning speed (Fig. 4a).

These correlations suggest that energy efficiency and stability
may be key physical principles that partially underpin both the
evolution of morphological intelligence and the Baldwin effect.
With regards to the Baldwin effect, variations in energy efficiency
lead to positive correlations across morphologies between two
distinct aspects of learning curves: the performance at the end of a
lifetime, and the speed of learning at the beginning. Thus
evolutionary processes that only select for the former will
implicitly also select for the latter, thereby explaining the stronger
form of the evolutionary Baldwin effect that we observe. With
regards to morphological intelligence, we note that MVT and VT
agents possess more intelligent morphologies compared to FT
agents as evidenced by better performance in test tasks (Fig. 3b),
especially with reduced learning iterations (Fig. 3c). Moreover,

VT/MVT agents are also more energy efficient compared to FT
agents (Fig. 3d). An intuitive explanation of this differential effect
of environmental complexity is that the set of subtasks that must
be solved accumulates across environments from FT to VT to
MVT. Thus, MVT agents must learn to solve more subtasks than
FT agents in the same amount of learning iterations. This may
result in a higher implicit selection pressure for desirable
morphological traits like stability and energy efficiency in
MVT/VT agents as compared to FT agents. And in turn, these
traits may enable better, faster, and more energy-efficient
performance in novel tasks for MVT/VT agents relative to FT
agents (Fig. 3b–d).

Discussion
The field of AI, which seeks to reproduce and augment biological
intelligence, has focused primarily on disembodied learning
methods. In contrast, embodied cognition3–5 posits that
morphologies adapted to a particular environment could greatly
simplify the problem of learning intelligent behaviors3,4. In this

Fig. 5 Relationship between energy efficiency, fitness, and learning speed. a Correlation between fitness (reward at the end of lifetime learning) and cost
of work for the top 100 agents across 3 evolutionary runs. b Correlation between learning speed (iterations required to achieve the 75th percentile fitness
of the initial population same as Fig. 4a) and cost of work for same top 100 agents as in (a). Across all generations, morphologies which are more energy-
efficient perform better (negative correlation) and learn faster (positive correlation). a, b Shown are the correlation coefficients (r) and P values obtained
from two-tailed Pearson’s correlation.
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work, we take a step towards creating intelligent embodied agents
via deep evolutionary reinforcement learning (DERL), a con-
ceptually simple framework designed to leverage advances in
computational and simulation capabilities. A key strength of our
framework is the ability to find diverse morphological solutions,
because asynchronous nature of the evolutionary dynamics, in
conjunction with the use of aging criteria for maintaining
population size, results in a weaker selection pressure compared
to techniques based on generational evolution. Although DERL
enables us to take a significant step forward in scaling the com-
plexity of evolutionary environments, an important line of future
work will involve designing more open-ended, physically realistic,
and multi-agent evolutionary environments.

We leverage the large-scale simulations made possible by
DERL to yield scientific insights into how learning, evolution,
and environmental complexity can interact to generate intelli-
gent morphologies that can simplify control by leveraging the
passive physics of body-environment interactions. We intro-
duce a paradigm to evaluate morphological intelligence by
measuring how well a morphology facilitates the speed and
performance of reinforcement learning in a suite of new tasks.
Intriguingly, we find that morphologies evolved in more com-
plex environments are better and faster at learning many novel
tasks. Our results can be viewed as a proof of concept that
scaling the axis of environmental complexity could lead to the
creation of embodied agents which could quickly learn to
perform multiple tasks in physically realistic environments. An
important future avenue of exploration is the design of a
comprehensive suite of evaluation tasks to quantify how agent
morphologies could enhance learning of more complex and
human-relevant behavior.

We also find that the fitness of an agent can be rapidly
transferred within a few generations of evolution from its phe-
notypic ability to learn to its genotypically encoded morphology
through a morphological Baldwin effect. Indeed this Baldwinian
transfer of intelligence from phenotype to genotype has been
conjectured to free up phenotypic learning resources to learn
more complex behaviors in animals57, including the emergence of
language58 and imitation59 in humans. The existence of a mor-
phological Baldwin effect could potentially be exploited in future
studies to create embodied agents in open-ended environments
which show greater sample efficiency and generalization cap-
abilities in increasingly complex tasks. Finally, we also showcase a
mechanistic basis for morphological intelligence and the Baldwin
effect, likely realized through implicit selection pressure for
favorable traits like increased passive stability and better energy
efficiency.

Overall, we hope our work encourages further large-scale
explorations of learning and evolution in other contexts to yield
new scientific insights into the emergence of rapidly learnable
intelligent behaviors, as well as new engineering advances in our
ability to instantiate them in machines.

Methods
Distributed asynchronous evolution. Simultaneously evolving and learning
embodied agents with many degrees of freedom that can perform complex tasks,
using only low-level egocentric sensory inputs, required developing a highly par-
allel and efficient computational framework which we call Deep Evolutionary
Reinforcement Learning (DERL). Each evolutionary run starts with an initial
population of P agents (here P= 576) with unique randomly generated
morphologies (described in more detail below) chosen to encourage diverse solu-
tions, as evidenced in (Fig. 2b), and prevent inefficient allocation of computational
resources on similar morphologies. Controllers for all P initial morphologies are
learned in parallel for 5 million agent-environment interactions (learning itera-
tions) each, and the average reward attained over approximately the last 100,000
iterations at the end of lifetime learning yields a fitness function over morphologies.
Starting from this initial population, nested cycles of evolution and learning pro-
ceed in an asynchronous parallel fashion.

Each evolutionary step consists of randomly selecting T= 4 agents from the
current population to engage in a tournament31,35. In each tournament, the agent
morphology with the highest fitness among the 4 is selected to be a parent. Its
morphology is then mutated to create a child which then undergoes lifetime
learning to evaluate its fitness. Importantly, the child starts lifetime learning with a
randomly initialized controller, so that only morphological information is inherited
from the parent. Such tabula rasa RL can be extremely sample inefficient especially
in complex environments. Hence, we further parallelize experience collection for
training each agent over 4 CPU cores. Two hundred and eighty-eight such
tournaments and child training are run asynchronously and in parallel over 288
workers each consisting of 4 CPUs, for a total of 1152 CPUs. The entire
computation takes place over 16 Intel Xeon Scalable Processors (Cascade Lake)
each of which has 72 CPUs yielding the total of 1152 CPUs. We note that we
simply chose the population size to be an integer multiple of 288, though our
results do not depend on this very specific choice.

Typically in generational evolution, in each cycle, the whole population is
replaced in a synchronized manner. Thus, maintaining population size is trivial
albeit at the cost of synchronization overhead. An alternative and perhaps more
natural approach is steady-state evolution wherein usually a small fraction of
individuals are created at every step of the algorithm and then they are inserted
back into the population, consequently coexisting with their parents33. The
population size can be maintained by either removing the least fit individual in a
tournament or utilizing the notion of age. In DERL, we keep the population size P
the same by removing the oldest member of the population after a child is added31.
We choose aging criteria for maintaining population size for the following reasons:

(1) Encourage diversity: The notion of age has also been utilized in the context
of generational evolution to foster diversity of solutions by avoiding premature
convergence60. This is typically achieved by using age in conjunction with fitness as
a selection criteria while performing tournaments. In DERL, each agent gets
multiple opportunities to accumulate a beneficial mutation that increases its fitness.
If multiple mutations do not confer a fitness advantage to an agent, then, and only
then, will the agent eventually get selected out since we keep the most recent P
agents alive. In contrast, if we removed the least fit individual in a tournament then
low fitness agents in the initial population will quickly get eliminated and result in
lower final diversity. This weaker selection pressure in conjunction with the
asynchronous nature of the algorithm results in a diversity of successful solutions
(Fig. 2b–h).

(2) Robustness: Aging criteria results in renewal of the whole population i.e.,
irrespective of fitness level the agent will be eventually removed (non-elitist
evolution). Thus, the only way for a genotype to survive for a long time is by
inheritance through generations and by accumulating beneficial mutations.
Moreover, since each agent is trained from scratch this also ensures that an agent
did not get lucky with one instance of training. Hence, aging ensures robustness to
genotypes in the initial population which might have high fitness by chance but are
actually not optimal for the environment. Indeed, we find that initial fitness is not
correlated with final abundance across all three environments (Fig. 2b).

(3) Fault tolerance: In a distributed setting fault tolerance to any node failure is
extremely important. In case of aging evolution if any compute node fails, a new
node can be brought online without affecting the current population. In contrast, if
population size is maintained by removing least fit individual in a tournament,
compute node failures will need additional book keeping to maintain total
population size. Fault tolerance significantly reduces the cost to run DERL on cloud
services by leveraging spare unused capacity (spot instances) which is often up to
90% cheaper compared to on-demand instances.

UNIversal aniMAL (UNIMAL) design space. The design of any space of
morphologies is subject to a stringent tradeoff between the richness and diversity of
realizable morphologies and the computational tractability of finding successful
morphologies by evaluating it’s fitness. Here, we introduce the UNIMAL design
space (Fig. 1d), which is an efficient search space over morphologies that intro-
duces minimal constraints while containing physically realistic morphologies and
gaits that can learn locomotion and mobile manipulation.

A genotype for morphologies can either be represented via direct encoding or
indirect encoding. Prior work on evolving soft robots has often used powerful
indirect encoding schemes like CPNN-NEAT61 encodings which can create
complex regularities such as symmetry and repetition22,23. However, for evolving
rigid body agents direct encoding is often used. Hence, we use direct encoding and
consequently our genotype is a kinematic tree, or a directed acyclic graph,
corresponding to a hierarchy of articulated 3D rigid parts connected via motor
actuated hinge joints. Nodes of the kinematic tree consist of two component types:
a sphere representing the head which forms the root of the tree, and cylinders
representing the limbs of the agent. Evolution proceeds through asexual
reproduction via an efficient set of three classes of mutation operations (Fig. 1b)
that: (1) either shrink or grow the kinematic tree by starting from a sphere and
growing or deleting limbs (grow limb(s), delete limb(s)); (2) modify the physical
properties of existing limbs, like their lengths and densities (mutate density, limb
params); (3) modify the properties of joints between limbs, including degrees of
freedom (DoF), angular limits of rotation, and gear ratios (mutate DoF, joint angle,
and gear). During the population initialization phase, a new morphology is created
by first sampling a total number of limbs to grow and then applying mutation
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operations until the agent has the desired number of limbs. We now provide a
description of the mutation operations in detail.

Grow limb(s). This mutation operation grows the kinematic tree by adding at
most 2 limbs at a time. We maintain a list of locations where a new limb can be
attached. The list is initialized with center of the root node. To add a new limb we
randomly sample an attachment location from a uniform distribution over possible
locations, and randomly sample the number of limbs to add as well as the limb
parameters. Limb parameters (Supplementary Table 1) include radius, height, limb
density, and orientation w.r.t. to the parent limb. We enforce that all limbs have the
same density, so only the first grow limb mutation samples limb density, and all
subsequent limbs have the same density. However, due to the mutate density
operation, all limb densities can change simultaneously under this mutation from a
parent to a child. We also only allow limb orientations which ensure that the new
limb is completely below the parent limb; i.e., the kinematic tree can only grow in
the downward direction. The addition of a limb is considered successful, if after
attachment of the new limb the center of mass of the agent lies on the sagittal plane
and there are no self intersections. Self intersections can be determined by running
a short simulation and detecting collisions between limbs. If the new limb collides
with other limbs at locations other than the attachment site, the mutation is
discarded. Finally, if the limb(s) were successfully attached we update the list of
valid attachment locations by adding the mid and end points of the new limb(s).
Symmetry is further enforced by ensuring that if a pair of limbs were added then all
future mutation operations will operate on both the limbs.

Delete limb(s). This mutation operation only affects leaf nodes of the kinematic
tree. Leaf limb(s) or end effectors are randomly selected and removed from the
kinematic tree in a manner that ensures symmetry.

Mutate limb parameters. A limb is modeled as cylinder which is parameterized
by it’s length and radius (Supplementary Table 1). Each mutation operation first
selects a limb or pair of symmetric limbs to mutate and then randomly samples
new limb parameters for mutation.

Mutate density. In our design space, all limbs have the same density. To mutate
the density we randomly select a new density value (Supplementary Table 1).
Similarly, we can also mutate the density of the head.

Mutate DoF, gear, and joint angle. We describe the three mutations affecting the
joints between limbs together, due to their similarity. Two limbs are connected by
motor actuated hinge joints. A joint is parameterized by it’s axis of rotation, joint
angle limits, and motor gear ratio41. There can be at most two hinge joints between
two limbs. In MuJoCo41, each limb can be described in its own frame of reference
in which the limb is extended along the z-axis. In this same frame of reference of
the child limb, the possible axes of rotations between the child and parent limbs,
correspond to the x-axis, the y-axis, or both (see Joint axis in Supplementary
Table 1). The main thing this precludes is rotations of a limb about its own axis.
Each mutation operation first selects a limb or pair of symmetric limbs to mutate
and then randomly samples new joint parameters (Supplementary Table 1). For
mutating DoF, in addition to selecting new axes of rotations, we also select new
gears and joint angles.

The UNIMAL design space is discrete as each mutation operation chooses a
random element from a corresponding list of possible parameter values (see
Supplementary Table 1). Although we could easily modify the possible parameter
values to be a continuous range, this would significantly increase the size of our
search space. The design choice of using discrete parameters helps us avoid wasting
computational resources on evaluating morphologies which are very similar, e.g., if
the only difference between two morphologies is limb height of 0.10 m vs 0.11 m.
Another design choice due to computational constraints is limiting the maximum
number of limbs to at most 10. Each additional limb increases control complexity
by increasing the number of DoFs. Hence, the primary consideration for a cap on
the number limbs was to ensure that the time it takes agents to learn to maximize
fitness through RL within a lifetime would remain <5 million agent-environment
interactions across all three environments. We found that the learning curves of all
our agents largely saturate to their maximal value within this time. Given more
compute budget, the limit on the number of limbs can be increased with a
commensurate increase in the number of agent-environment interactions. Finally,
although we constrain the UNIMAL design space to be symmetric, it might be
interesting to explore the relationship between bilaterally symmetric morphologies
and morphological intelligence similar in spirit to work done by Bongard et al.62.

Environments. DERL enables us to simultaneously evolve and learn agents in three
environments (Fig. 1e) of increasing complexity: (1) Flat terrain (FT); (2) Variable
terrain (VT); and (3) Non-prehensile manipulation in variable terrain (MVT). We
use the MuJoCo41 physics simulator for all our experiments. To ensure physical
realism of simulation we adopt the simulation parameters (e.g., friction coefficient,
gravity etc.) from standard robot and reinforcement learning benchmarks63,64.
Moreover, these parameters have been used in numerous successful simulation to

real-world transfer experiments65–67. We now provide a detailed description of
each environment:

Flat terrain. The goal of the agent is to maximize forward displacement over the
course of an episode. At the start of an episode, an agent is initialized on one end of
a square arena of size (150 × 150 square meters (m2)).

Variable terrain. Similar to FT, the goal of the agent is to maximize forward
displacement over the course of an episode. At the start of an episode, an agent is
initialized on one end of a square arena of size (100 × 100 m2). In each episode, a
completely new terrain is created by randomly sampling a sequence of obstacles
(Fig. 1e) and interleaving them with flat terrain. The flat segments in VT are of
length l∈ [1, 3] m along the desired direction of motion, and obstacle segments are
of length l∈ [4, 8] m. Each obstacle is created by sampling from a uniform dis-
tribution over a predefined range of parameter values. We consider 3 types of
obstacles: 1. Hills: Parameterized by the amplitude a of sin wave where
a∈ [0.6, 1.2] m. 2. Steps: A sequence of 8 steps of height 0.2 m. The length of each
step is identical and is equal to one-eighth of the total obstacle length. Each step
sequence is always 4-steps up followed by 4-steps down. 3. Rubble: A sequence of
random bumps created by clipping a repeating triangular sawtooth wave at the top
such that the height h of each individual bump clip is randomly chosen from the
range h∈ [0.2, 0.3] m. Training an agent for locomotion in variable terrain is
extremely challenging as prior work43 on learning locomotion in a similar terrain
for a hand-designed 9 DoF planar 2D walker required 107 agent-environment
interactions, despite using curriculum learning and a morphology specific reward
function.

Manipulation in variable terrain. This environment is like VT with an arena of
size (60 × 40 m2). However, here the goal of the agent is to move a box (a cube with
side length 0.2 m) from it’s initial position to a goal location. All parameters for
terrain generation are the same as VT. In each episode, in addition to creating a
new terrain, both the initial box location and final goal location are also randomly
chosen with the constraint that the goal location is always further along the
direction of forward motion than the box location.

These environments are designed to ensure that the number of sub-tasks
required to achieve high fitness is higher for more complex environments.
Specifically, a FT agent has to only learn locomotion on a flat terrain. In addition, a
VT agent needs to also learn to walk on hills, steps, and rubble. Finally, along with
all the sub-tasks which need to be mastered in VT, a MVT agent should also learn
directional locomotion and non-prehensile manipulation of objects. The difference
in arena sizes is simply chosen to maximize simulation speed while being big
enough that agents cannot typically complete the task sooner than an episode
length of 1000 agent-environment interactions (iterations). Hence, the arena size
for MVT is smaller than VT. Indeed it would be interesting to extend these results
to even more physically realistic and complex environments.

Reinforcement learning. The RL paradigm provides a way to learn efficient
representations of the environment from high-dimensional sensory inputs, and use
these representations to interact with the environment in a meaningful way. At
each time step, the agent receives an observation ot that does not fully specify the
state (st) of the environment, takes an action at, and is given a reward rt. A policy
πθ(at∣ot) models the conditional distribution over action at∈A given an observa-
tion ot∈O(st). The goal is to find a policy which maximizes the expected cumu-
lative reward R ¼ ∑H

t¼0 γ
t rt under a discount factor γ∈ [0, 1), where H is the

horizon length.

Observations. At each time step, the agent senses the world by receiving low-level
egocentric proprioceptive and exteroceptive observations (Fig. 1c). Proprioceptive
observations depend on the agent morphology and include joint angles, angular
velocities, readings of a velocimeter, accelerometer, and a gyroscope positioned at
the head, and touch sensors attached to the limbs and head as provided in the
MuJoCo41 simulator. Exteroceptive observations include task-specific information
like local terrain profile, goal location, and the position of objects and obstacles.

Information about the terrain is provided as 2D heightmap sampled on a non-
uniform grid to reduce the dimensionality of data. The grid is created by decreasing
the sampling density as the distance from the root of the body increases43. All
heights are expressed relative to the height of the ground immediately under the
root of the agent. The sampling points range from 1m behind the agent to 4 m
ahead of it along the direction of motion, as well as 4 m to the left and right
(orthogonal to the direction of motion). Note the height map is not provided as
input in tasks like patrol, point navigation etc. where the terrain is flat and does not
have obstacles. Information about goal location for tasks like point navigation,
patrol etc., and the position and velocity of objects like ball/box for manipulation
tasks are provided in an egocentric fashion, using the reference frame of the head.

Our sensors make simplifying assumptions like avoiding high dimensional
image input and providing the location of the box for the task of manipulation as
part of exteroceptive observation. Evolving agents which could perform the same
tasks in the real world would require additional computational processing to infer
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the height field information from raw camera images, and development of
sophisticated exploration strategies for finding objects in a new environment.

Rewards. The performance of RL algorithms is dependent on good reward
function design. A common practice is to have certain components of the reward
function be morphology dependent43. However, designing morphology-dependent
reward functions is not feasible when searching over a large morphological design
space. One way to circumvent this issue is to limit the design space to morphol-
ogies with similar topologies15. But this strategy is ill-suited as our goal is to have
an extremely expressive morphological design space with minimal priors and
restrictions. Hence, we keep the reward design simple, offloading the burden of
learning the task from engineering reward design to agent morphological evolution.

For FT and VT at each time step t the agent receives a reward rt given by,

rt ¼ wxvx � wc kak2; ð1Þ
where vx is the component of velocity in the +x direction (the desired direction of
motion), a is the input to the actuators, and wx and wc weight the relative
importance of the two reward components. Specifically, wx= 1, and wc= 0.001.
This reward encourages the agent to make forward progress, with an extremely
weak penalty for very large joint torques. Note that for selecting tournament
winners in the evolutionary process, we only compare the forward progress
component of the reward i.e., wxvx. Hence, there is no explicit selection pressure to
minimize energy. We adopt a similar strategy for tournament winner selection
in MVT.

For MVT at each time step t the agent receives a reward rt given by,

rt ¼ waodao þ wogdog � wc kak2; ð2Þ

Here dao is geodesic distance between the agent and the object (box) in the previous
time step minus this same quantity in the current time step. This reward
component encourages the agent to come close to the box and remain close to it.
dog is geodesic distance between the object and the goal in previous time step minus
this same quantity in the current time step. This encourages the agent to
manipulate the object towards the goal. The final component involving ∥a∥2
provides a weak penalty on large joint torques as before. The weights wao, wog, wc

determine the relative importance of the three components. Specifically,
wao= wog= 100, and wc= 0.001. In addition, the agent is provided a sparse reward
of 10 when it is within 0.75 m of the initial object location, and again when the
object is within 0.75 m of goal location. This sparse reward further encourages the
agent to minimize the distance between the object and the goal location while being
close to the object.

In addition, we use early termination across all environments when we detect a
fall. We consider an agent to have fallen if the height of the head of the agent drops
below 50% of its original height. We found employing this early termination
criterion was essential in ensuring diverse gaits. Without early termination, almost
all agents would immediately fall and move in a snake-like gait.

Policy architecture. The agent chooses it’s action via a stochastic policy πθ where θ
are the parameters of a pair of deep neural networks: a policy network which
produces an action distribution (Fig. 1c), and a critic network which predicts
discounted future returns. Each type of observation is encoded via a two-layer MLP
with hidden dimensions [64, 64]. The encoded observations across all types are
then concatenated and further encoded into a 64-dimensional vector, which is
finally passed into a linear layer to generate the parameters of a Gaussian action
policy for the policy network and discounted future returns for the critic network.
The size of the output layer for the policy network depends on the number of
actuated joints. We use tanh non-linearities everywhere, except for the output
layers. The parameters (~250,000) of the networks are optimized using Proximal
Policy Optimization36 (PPO). Although these networks are shallow compared to
modern neural networks, we believe that with an increase in simulation and
computation capabilities our framework could be scaled to use more sophisticated
and deeper neural networks. Our policy architecture is monolithic as we do not
have to share parameters across generations. Modular policy architectures68–70

leveraging graph neural networks could be used in Lamarckian evolutionary
algorithms.

Optimization. Policy gradient methods are a popular class of algorithms for
finding the policy parameters θ which maximize R via gradient ascent. Vanilla
policy gradient71 (VPG) is given by L ¼ E½Ât∇θ log πθ �, where Ât is an estimate of
the advantage function. VPG estimates can have high variance and be sensitive to
hyperparameter changes. To overcome this PPO36 optimizes a modified objective
L ¼ E minðltðθÞÂt ; clipðltðθÞ; 1� ϵ; 1þ ϵÞÂt

� �
, where ltðθÞ ¼ πθ ðat jot Þ

πold ðat jot Þ denotes the
likelihood ratio between new and old policies used for experience collection. We
use Generalized Advantage Estimation72 to estimate the advantage function. The
modified objective keeps lt(θ) within ϵ and functions as an approximate trust-
region optimization method; allowing for the multiple gradient updates for a mini-
batch of experience, thereby preventing training instabilities and improving sample
efficiency. We adapt an open source73 implementation of PPO (see Supplementary
Table 2) for hyperparameter values. We keep the number of learning iterations the

same across all evolutionary environments. In all environments, agents have 5
million learning iterations to perform lifetime learning.

Evaluation task suite. A key contribution of our work is to take a step towards
quantifying morphological intelligence. Concretely, we compute how much a
morphology facilitates the process of learning a large set of test tasks. We create a
suite of 8 tasks (Fig. 3a) categorized into 3 domains testing agility (patrol, point
navigation, obstacle, and exploration), stability (escape and incline), and manip-
ulation (push box incline and manipulate ball) abilities of the agent morphologies.
Controllers for each task are learned from scratch, thus ensuring that differences in
performance are solely due to differences in morphologies. Note that from RL
perspective both task and environment are the same, i.e., both are essentially
Markov decision processes. Here, we use the term environment to distinguish
between evolutionary task and test tasks. We now provide a description of the
evaluation tasks and rewards used to train the agent.

Patrol. The agent is tasked with running back and forth between two goal locations
10 m apart along the x axis. Success in this task requires the ability to move fast for
a short duration and then quickly change direction repeatedly. At each time step
the agent receives a reward rt given by,

rt ¼ wagdag � wc kak2; ð3Þ

where dag is geodesic distance between the agent and the goal in the previous time
step minus this same quantity in the current time step, wag= 100, and wc= 0.001.
In addition, when the agent is within 0.5 m of the goal location, we flip the goal
location and provide the agent a sparse reward of 10.

Point navigation. An agent is spawned at the center of a flat arena (100 × 100 m2).
In each episode, the agent has to reach a random goal location in the arena. Success
in this task requires the ability to move in any direction. The reward function is
similar to the patrol task.

Obstacle. The agent has to traverse a dense area of static obstacles and reach the
end of the arena. The base and height of each obstacle vary between 0.5 and 3 m.
The environment is a rectangular flat arena (150 × 60 m2) with 50 random
obstacles initialized at the start of each episode. Success in this task requires the
ability to quickly maneuver around obstacles. The obstacle information is provided
in the form of terrain height map. The reward function is similar to that of
locomotion in FT.

Exploration. The agent is spawned at the center of a flat arena (100 × 100 m2). The
arena is discretized into grids of size (1 × 1 m2) and the agent has to maximize the
number of distinct squares visited. At each time step agent receives,

rt ¼ weðet � et�1Þ � wc kak2; ð4Þ

where et denotes total number of locations explored till time step t, we= 1, and
wc= 0.001. In addition to testing agility this task is challenging, as unlike in the
case of dense locomotion rewards for previous tasks, here the agent gets a sparser
reward.

Escape. The agent is spawned at the center of a bowl-shaped terrain surrounded by
small hills63 (bumps). The agent has to maximize the geodesic distance from the
start location (escape the hilly region). This task tests the agent’s ability to balance
itself while going up/down on a random hilly terrain. At each time step the agent
receives reward,

rt ¼ wddas � wc kak2; ð5Þ

where das is geodesic distance between the agent and the initial location in the
current time step minus this same quantity in the previous time step, wd= 1, and
wc= 0.001.

Incline. The agent is tasked to move on rectangular arena (150 × 40 m2) inclined at
10∘. Reward is similar to FT.

Push box incline. A mobile manipulation task, where the objective is to push a box
(of side length 0.2 m) along an inclined plane. The agent is spawned at the start of a
rectangular arena (80 × 40 m) inclined at 10∘. Reward is similar to MVT.

Manipulate ball. A mobile manipulation task, where the objective is to move a ball
from a source location to a target location. In each episode, a ball (radius 0.2 m) is
placed at a random location on a flat square arena (30 × 30 m) and the agent is
spawned at the center. This task poses a challenging combination of locomotion
and object manipulation, since the agent must rely on complex contact dynamics to
manipulate the movement of the ball while also maintaining balance. Reward is
similar to MVT.
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Reporting methodology. The performance of RL algorithms is known to be
strongly dependent on the choice of the seed for random number generators74. To
control for this variation, within an evolutionary run we use the same seed for all
lifetime learning across all morphologies. However, we take several steps to ensure
robustness to this choice. First, we repeat each evolutionary run three times for each
environment with different random seeds. Then to find the best morphologies for
each environment in a manner that is robust to choice of seed, we select the top 3
agents from all surviving lineages across all 3 evolutionary runs. Typically, in a
single evolutionary run we find 15–20 surviving lineages, yielding a total of 135–180
good morphologies per environment (at 3 per lineage over 3 evolutionary runs).
Then we further train these morphologies 5 times with 5 entirely new random seeds.
This final step ensures robustness to choice of seed without having to run evolution
many times. Finally, we select the 100 best agents in these new training runs for each
environment. These 100 agents are used to generate the data shown in Fig. 2a,
Fig. 4a, c, and Fig. 5. We also compare the performance of the top 10 out of these
100 agents across the suite of 8 test tasks (Fig. 3b–d). For all test tasks we use the
same network architecture, hyperparameter values, and learning procedure as used
during evolution, and train the controller from scratch with 5 random seeds.

Cost of work. Cost of transportation75 (COT) is a dimensionless measure that
quantifies how much energy is applied to a system of a specified massM in order to
move the system a specified distance D. That is,

COT ¼ E
MgD

; ð6Þ

where E is the total energy consumption for traveling distance D, M is the total
mass of the system, and g is the acceleration due to gravity. COT and it’s variants
have been used in a wide range of domains to compare energy-efficient motion of
different robotic systems76, vehicles75, and animals77. We note that COT essentially
measures energy spent per unit mass per unit distance, as the normalization factor
g required to make this measure dimensionless is the same for all systems. We
adapt this metric to more general RL tasks to measure energy per unit mass per
unit reward instead of energy per unit mass per unit distance. That is we define a
cost of work (COW) by,

COW ¼ E
Mgr

; ð7Þ

where E is the energy spent, M is the mass, and r is the reward achieved. For most
locomotion tasks like locomotion in FT/VT, patrol, obstacle, escape and incline
where reward is proportional to the distance traveled; COW and COT are essen-
tially the same albeit with different units. We measure energy as the absolute sum
of all joint torques78. This definition was used to compute energy efficiency (with
lower COW indicating higher energy efficiency) in both evolutionary environments
(Fig. 4c) and test tasks (Fig. 3b–d).

Stability. Informally, passive stability is the ability to stand without falling and is
achieved via mechanical design of the agent/robot. Dynamic stability is the ability
to move without falling over and is achieved via control. Formally an agent is
passively stable, when the center of mass is inside the support polygon and the
polygon’s area is greater than zero79. The support polygon is the convex hull of all
of the agent’s contact points with the ground. We measure passive stability by
checking if the agent falls over without any control. The agent is initialized at the
center of arena and we measure the position of the head at the beginning and after
400 time steps (a full episode is 1000 time steps). An agent is passively stable if the
head position after 400 time steps is above 50% of original height. Note that we use
the violation of this same condition for early termination of the episode (see
Rewards). We use this notion of passive stability in Fig. 4b.

Beneficial mutations. We define a mutation to be beneficial if the difference
between the child and parent fitness is above a certain threshold. Although any
non-zero increase in fitness is a beneficial mutation, small changes in fitness
acquired via RL might not be statistically meaningful, especially since during
evolution the fitness is calculated using a single seed. Hence, we heuristically set the
threshold as a minimum increase in the final average reward by 300 for FT and 100
for VT and MVT. Roughly these numbers correspond to the 75th percentile in the
distribution of fitness increases across all mutations in a given environment. We
use this definition of beneficial mutations in Fig. 2b.

Data availability
The configuration files necessary to reproduce the data used in this work have been made
available on Github (https://github.com/agrimgupta/derl).

Code availability
We have released a Python implementation of DERL on GitHub (https://github.com/
agrimgupta/derl). In addition, the repository also includes code for creating UNIMALS,
generating evolutionary environments, and evaluation task suite. The code, setup
instructions, and the configuration files needed for reproducing the results of the paper
are available on GitHub (https://github.com/agrimgupta/derl).
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